tacco.tools.annotate_svm¶
- annotate_svm(adata, reference, annotation_key=None, counts_location=None, mode='classification', trafo=None, seed=42, **kwargs)[source]¶
Annotates an
AnnData
using reference data by an SVM [Abdelaal19].This is the direct interface to this annotation method. In practice using the general wrapper
annotate()
is recommended due to its higher flexibility.- Parameters:
adata – An
AnnData
including expression data in .X.reference – Reference data to get the annotation definition from.
annotation_key – The .obs key where the annotation is stored in the reference. If None, it is inferred from reference, if possible.
counts_location – A string or tuple specifying where the count matrix is stored, e.g. ‘X’, (‘raw’,’X’), (‘raw’,’obsm’,’my_counts_key’), (‘layer’,’my_counts_key’), … For details see
counts()
.mode – Selects what svm should be used. Possible values are “classification” to use
LinearSVC
and “regression” to useLinearSVR
.trafo –
Selects a transformation for the data before putting it into the SVM. Available are:
’sqrt’: Use the squareroot of .X; equivalent to using probability amplitudes, i.e. Bhattacharyya projections
’log1p’: Use log1p-transformed data
None: Dont transform the data
seed – Random seed
**kwargs – Additional keyword arguments are forwarded to the
LinearSVC
orLinearSVR
constructor depending on the value of mode.
- Returns:
Returns the annotation in a
DataFrame
.