tacco.preprocessing.filter¶
- filter(adata, min_counts_per_gene=None, min_counts_per_cell=None, min_cells_per_gene=None, min_genes_per_cell=None, remove_constant_genes=False, remove_zero_cells=False, assume_valid_counts=False, return_view=True)[source]¶
Filter one or more
AnnData
to satisfy simple quality criteria. In contrast toscanpy.pp.filter_cells()
andscanpy.pp.filter_genes()
this function iterates the filters until convergence.- Parameters:
adata – An
AnnData
containing the expression to filter. It can also be an iterable ofAnnData
to apply the filter to all instances and use the intersection of genes for all.min_counts_per_gene – The minimum count (per
AnnData
) genes must have to be kept.min_counts_per_cell – The minimum count (per
AnnData
) cells must have to be kept.min_cells_per_gene – The minimum number of cells (per
AnnData
) genes must have to be kept.min_genes_per_cell – The minimum number of genes (per
AnnData
) cells must have to be kept.remove_constant_genes – Whether to remove genes which do not show any variation between cells
remove_zero_cells – Whether to remove cells without non-zero genes
assume_valid_counts – Disable checking for invalid counts (e.g. non-integer or negative).
return_view – Instead of
AnnData
instances, return filtered views into the original adata. If nothing is filtered or permuted, return the original adata.
- Returns:
Returns the filtered adata.